If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+8n-84=0
a = 1; b = 8; c = -84;
Δ = b2-4ac
Δ = 82-4·1·(-84)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-20}{2*1}=\frac{-28}{2} =-14 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+20}{2*1}=\frac{12}{2} =6 $
| 8(h-1)=6h+4=2h | | 2(x+8)=6x+20 | | 161=4x+161 | | 170=50+40x | | 2y+5+2y=-5 | | 118=x | | -9/5x=-5 | | 3.1q-2.2-4.6q=0.5q-2.2 | | 19x=418 | | 5(9+x)=125 | | x*3=47 | | 6.7x+1=5.7 | | 180=68+44+58+73=x | | 5(9+x)=25 | | 2•2=z-1•1 | | (5.6-2a+1.4)÷1.2=4.5 | | 12+10=c | | 8/8=12/k | | 21-8x=-35 | | 68+44+58+73=x | | 4.6x+8-2.3x=19.5 | | 4x+11=6x+35 | | 4y-1=37 | | x+x*6=84 | | 4(7x+2)=2(9x-5)+10 | | 56=k-23+5 | | x+x+89+40=X | | x+x+89+40=180 | | (2x+4)(3x+12)=0 | | 4/3b-11=25=25 | | 0.18c=48 | | 9-y=286 |